
Cutting a Convex Figure into Six Pieces

Problem stated in 2012 by Roman Karasev

There is a variety of results about “fair” partitions of con-
vex bodies or measures in Euclidean spaces. The famous
“ham sandwich” theorem [7, 6] asserts that any n absolutely
continuous probability measures in Rn can be simultane-
ously partitioned into equal halves with a single hyperplane.
This classical result is known for a long time and is usually
proved using the Borsuk–Ulam theorem or similar topologi-
cal techniques.

Recently, Pablo Soberón [5] (see also [3] for a more gen-
eral approach) has generalized this result to the case when
we want to partition n measures into m equal parts with a
convex partition of Rn.

Another almost elementary case of this problem is par-
titioning a convex figure (convex compactum) in the plane
into m parts of equal areas and perimeters. Nandakumar,
Ramana Rao in [4] and Bárány, Blagojević, and Szűcs in [2]
considered particular cases of this problem. Finally, in [3]
(see also [1] for a slightly different approach) the result was
established for prime powers m = pk using the technique of
Victor Vasil’ev [8].

This result is relatively easy to establish for prime m, but
in the general case one cannot use a decomposition of m into
prime factors (as was used for the measure partition problem
in [5]) because the perimeter is not an additive function of
convex bodies. So the simplest remaining case of the area
and perimeter equipartition problem is:

PROBLEM. Is it possible to partition every convex figure
C ⊂ R2 into six pieces of equal areas and perimeters?

Of course, other numbers that are not prime powers are
also worth attention.
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